


# The IPv6 (in)security





Confidence 2010.11, Prague, XI.2010



### **Disclaimer**

- The IPv6 should be treated as another protocol there's no inherent security problem in the idea itself, but as usual, many mechanism need to be mastered to be applied securely
- We will migrate to IPv6 at some point in time, so you'll either spend time now to learn and apply the knowledge in practice, or be forced to learn it very fast later on – with obvious drawbacks
- You're running IPv6 anyway propably today, even if you don't know it

## **Agenda**

- The security problems in IPv4 solved in IPv6
- Attack environment for IPv6
- Protecting the network

Management plane

Control plane

Data plane

- Other issues and areas of concern
- Real life implementation info
- Q&A



## Security problems of IPv4 solved in IPv6



### None

- All layers above IPv4 are equally "insecure" as the ones over the IPv6
- IPv6 makes some things better, other things worse and some things differently than in IPv4
- IPv6 is more complex than IPv4
   complexity brings problems in security
- All vendors leading IPv6 efforts have already published bugs, and they'll publish more

Cisco, Juniper, Microsoft, Sun/Oracle and a lot of Open Source software



## IPv6 attack environment



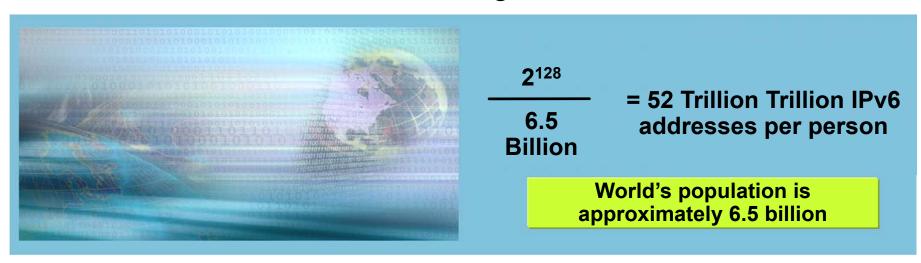
## **Nothing changed fundamentally**

Sniffing

IPv6 mandates IPsec capabilities, do you use it end-to-end after finally getting connected?

Application-level attacks

Even if IPsec is turned on – most of the attacks happen in this layer anyway, so "did you install a Service Pack today"?


Rogue devices & MITM attacks

Still can and will be executed

### Reconnaissance In IPv6

#### Subnet Size Difference

- Default subnets in IPv6 have 2<sup>64</sup> addresses
   14.8 Mpps (roughly a 10GE interface) = ~40 000 years
- This makes scanning blindly inefficient
- There are interesting studies for real world assignment behaviors for IPv6 addressing\*



<sup>\*</sup> Malone, D. 2008. *Observations of IPv6 Addresses*. Passive and Active Measurement Conference (PAM 2008, LNCS 4979), 29–30 April 2008.

## Reconnaissance In IPv6 Scanning Methods Are Likely to Change

- Public servers will still need to be DNS reachable
   More information collected by Google...
- Increased deployment/reliance on dynamic DNS
   More information will be in DNS
- Using peer-to-peer clients gives IPv6 addresses of peers
- Administrators may adopt easy-to-remember addresses
   (::10,::20,::F00D, ::DEAD, ::C5C0 or simply IPv4 last octet for dual stack)
- By compromising hosts in a network, an attacker can learn new addresses to scan
- Transition techniques derive IPv6 address from IPv4 address

## **Scanning Made Bad for CPU**

Potential router CPU attacks if aggressive scanning

Router will do Neighbor Discovery... And waste CPU and memory

Built-in rate-limiters, or just pushing a separate FPGA to do the job is not an solution, it's just a way to address the problem, not solve the root cause

- Using a /64 on point-to-point links => a lot of addresses to scan!
- Using infrastructure ACL prevents this scanning

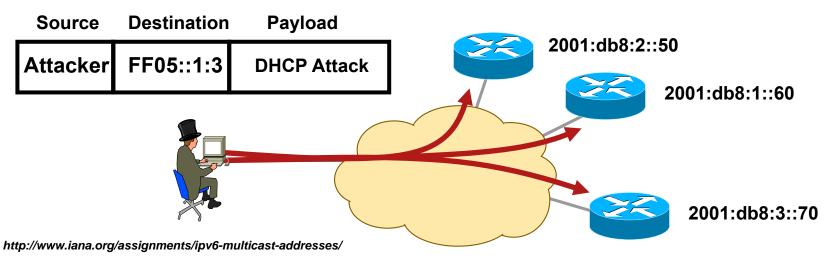
iACL: edge ACL denying packets addressed to your routers

Easy with IPv6 because new addressing scheme can be done ©

### **Reconnaissance In IPv6?**

#### **Easy With Multicast!**

- No need for reconnaissance anymore
- 3 site-local multicast addresses


FF05::2 all-routers, FF05::FB mDNSv6, FF05::1:3 all DHCP servers

Several link-local multicast addresses

FF02::1 all nodes, FF02::2 all routers, FF02::F all UPnP, ...

Some deprecated (RFC 3879) site-local addresses but still used

FEC0:0:0:FFFF::1 DNS server



### Reconnaissance In IPv6?

Defense at the edge of own network

**Organization B** 



ipv6 access-list NO\_RECONNAISSANCE

deny any fec0::/10
permit any ff02::/16
permit any ff0e::/16
deny any ff00::/8
permit any any

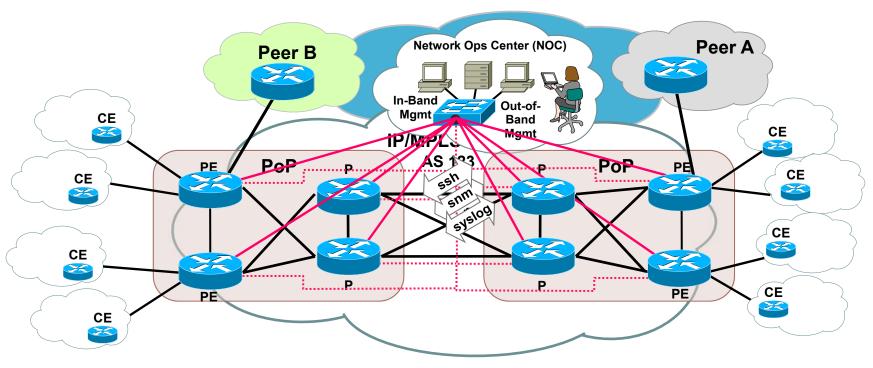
- The site-local/anycast addresses must be filtered at the border in order to make them unreachable from the outside
- ACL block ingress/egress traffic to

Block FEC0::/10 (deprecated site-local addresses)

Permit mcast to FF02::/16 (link-local scope)

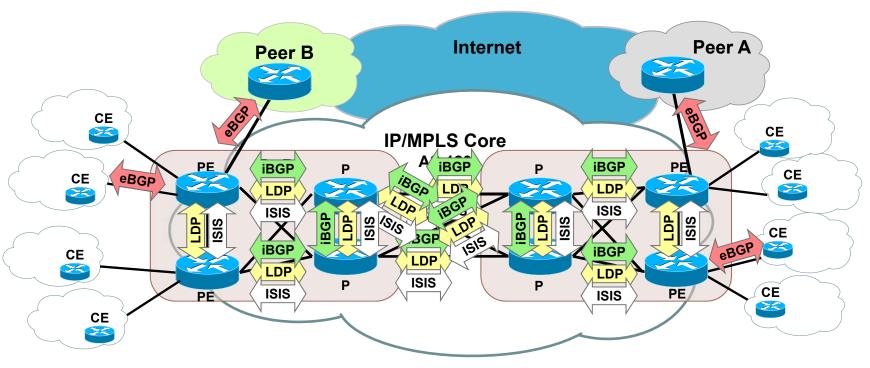
Permit mcast to FF0E::/16 (global scope)

Block all mcast



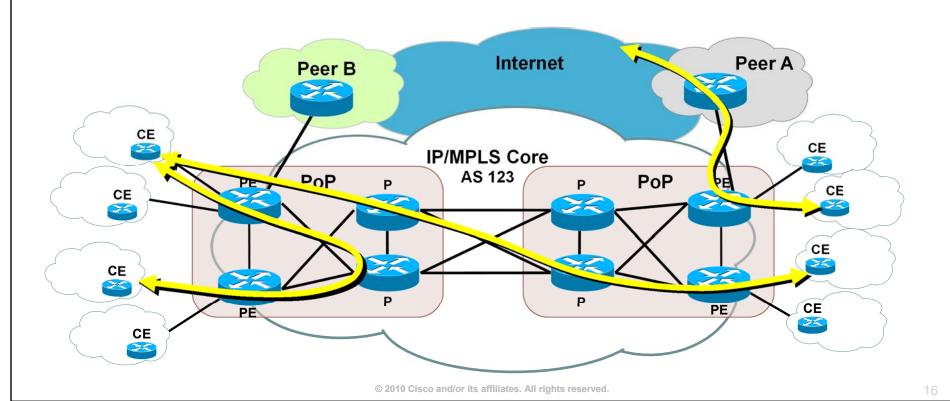

## Protecting the management plane




## **Management plane**

 Management, provisioning, monitoring with protocols like SSH, FTP, SNMP, Syslog, TACACS+ i RADIUS, DNS, NetFlow, ROMMON, CDP, LLDP, others




## **Control plane**

 All the protocols that are making the network to work – forward packets, establish adjacencies with new routers, etc. – protocols like BGP, OSPF, LDP, IS-IS, ARP, Layer 2 keepalives, ATM OAM, PPP LCP, others



### **Data plane**

 Traffic going from and to customers – it's the traffic SP shouldn't touch, but contains all of the protocols customers can use



## **Management over IPv6**

- SSH, syslog, SNMP, NetFlow all work over IPv6
- Dual-stack management plane

More resilient: works even if one IP version is down

More exposed: can be attacked over IPv4 and IPv6

Currently under development: RADIUS
 But, IPv6 RADIUS attributes can be transported over IPv4

As usual, infrastructure ACL is your friend



## Protecting the control plane



## **Preventing IPv6 Routing Attacks**

#### **Protocol Authentication**

BGP, ISIS, EIGRP no change:

An MD5 authentication of the routing update

- OSPFv3 has changed and pulled MD5 authentication from the protocol and instead is supposed to rely on transport mode IPSec
- RIPng and PIM also rely on IPSec
- IPv6 routing attack best practices

Use traditional authentication mechanisms on BGP and IS-IS

Use IPSec to secure protocols such as OSPFv3 and RIPng

### Link-Local vs. Global Addresses

Link-Local addresses, fe80::/16, (LLA) are isolated
 Cannot reach outside of the link

Cannot be reached from outside of the link

Could be used on the infrastructure interfaces

Routing protocols (including BGP) work with LLA

Benefit: no remote attack against your infrastructure

Implicit infrastructure ACL

Note: need to provision loopback for ICMP generation (notably *traceroute* and PMTUD)

LLA can be configured statically (not the EUI-64 default) to avoid changing neighbor statements when changing MAC

interface FastEthernet 0/0

ipv6 address fe80::1/16 link-local

## ARP Spoofing is now NDP Spoofing: Threats

 ARP is replaced by Neighbor Discovery Protocol Nothing authenticated
 Static entries overwritten by dynamic ones

Stateless Address Autoconfiguration

rogue RA (malicious or not)

All nodes badly configured

DoS

Traffic interception (Man In the Middle Attack)

Attack tools exist (from THC – The Hacker Choice)

Parasit6

Fakerouter6

. . .



## ARP Spoofing is now NDP Spoofing: Mitigation

BAD NEWS: nothing like dynamic ARP inspection for IPv6

Platforms dealing with the traffic in hardware will need to be upgraded – meaning either forklift upgrade (whole chassis/RP/LC) or just a firmware update on the FPGAs

GOOD NEWS: Secure Neighbor Discovery (RFC 3971)

SEND = NDP + crypto

Present in Cisco IOS and an open source implementations

But not in Windows Vista, 2008, 7... (incompatible with SLAAC privacy extensions enabled by default)

Crypto means slower – while it may not hit your workstation it will hit many small computers (the case as it was with vendors not implementing WEP and then WPA because ,it slows down the network') and needs PKI infrastructure

#### Other GOOD NEWS:

Private VLAN works with IPv6

Port security works with IPv6

801.x works with IPv6

Port ACL on IPv6 capable switches

For FTTH & other broadband access, DHCP-PD means not need to layer-2 communication between CPE

## Secure Neighbor Discovery (SEND) RFC 3971

Cryptographically Generated Addresses (CGA)

IPv6 addresses whose interface identifiers are cryptographically generated

RSA signature option

Protect all messages relating to neighbor and router discovery

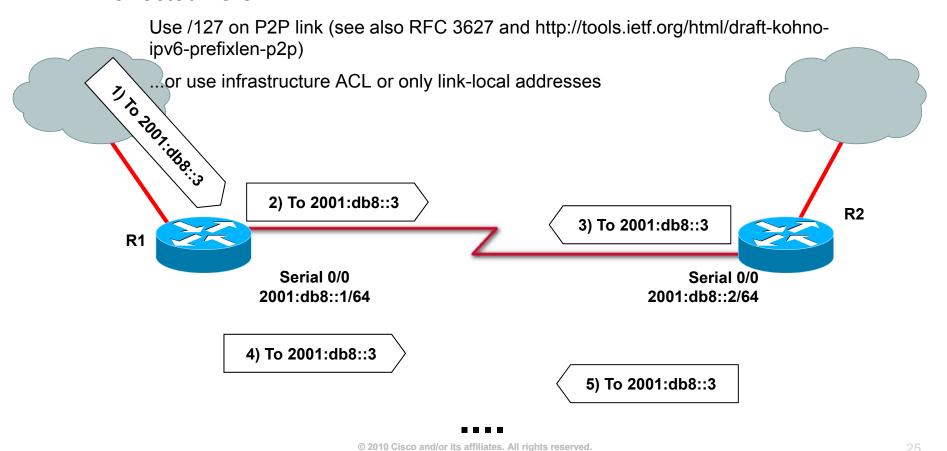
Timestamp and nonce options

Prevent replay attacks

Certification paths for authorized Routers

Anchored on trusted parties, expected to certify the authority of the routers on some prefixes



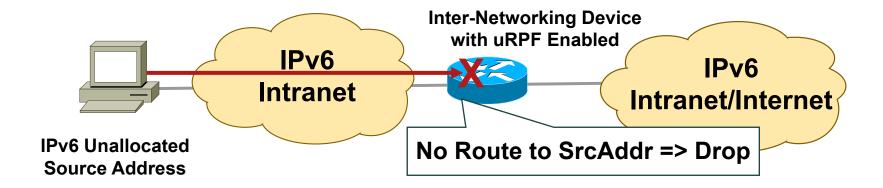

## Protecting the data plane



### **DoS Example**

#### Ping-Pong over Physical Point-to-Point

- Same as in IPv4, on real P2P, if not for me send it on the other side...
   Could produce looping traffic
- Platforms implementing RFC 4443 (ICMPv6) correctly are not affected here




## IPv6 Bogon Filtering and Anti-Spoofing

IPv6 nowadays has its bogons:

http://www.team-cymru.org/Services/Bogons/fullbogons-ipv6.txt

- Similar situation as IPv4
  - => Same technique for single-homed edge= uRPF



## **IPv6 Privacy Extensions (RFC 3041)**

/23 /32 /48 /64

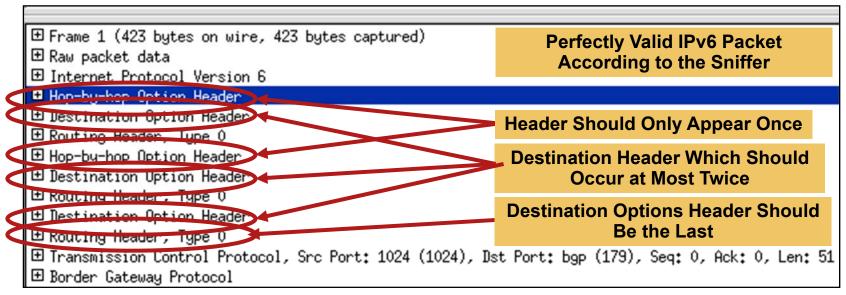
2001 Interface ID

 Temporary addresses for IPv6 host client application, e.g. web browser

Inhibit device/user tracking

Random 64 bit interface ID, then run Duplicate Address Detection before using it

Rate of change based on local policy


Recommendation: Use Privacy Extensions for External Communication but not for Internal Networks (Troubleshooting and Attack Trace Back)

## **IPv6** Header Manipulation

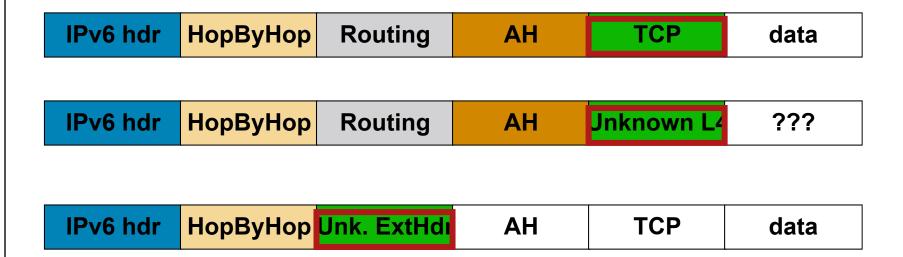
- Unlimited size of header chain (spec-wise) can make filtering difficult
- Potential DoS with poor IPv6 stack implementations

More boundary conditions to exploit

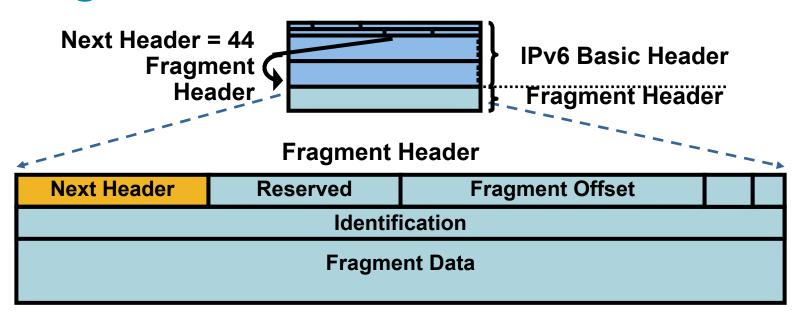
Can I overrun buffers with a lot of extension headers?



See also: http://www.cisco.com/en/US/technologies/tk648/tk872/technologies\_white\_paper0900aecd8054d37d.html


## Parsing the Extension Header Chain

Finding the layer 4 information is not trivial in IPv6


Skip all known extension header

Until either known layer 4 header found => **SUCCESS** 

Or unknown extension header/layer 4 header found... => FAILURE

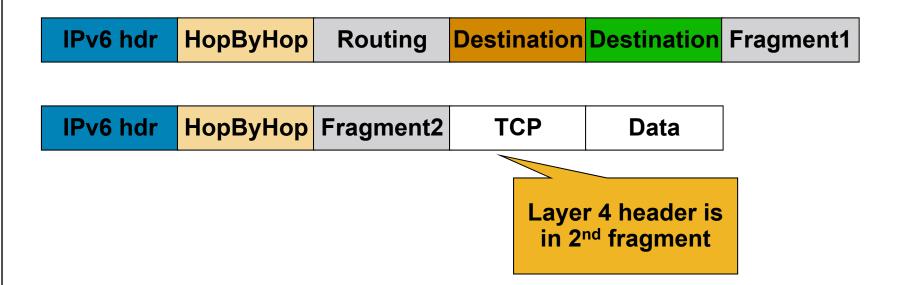


## Fragment Header: IPv6



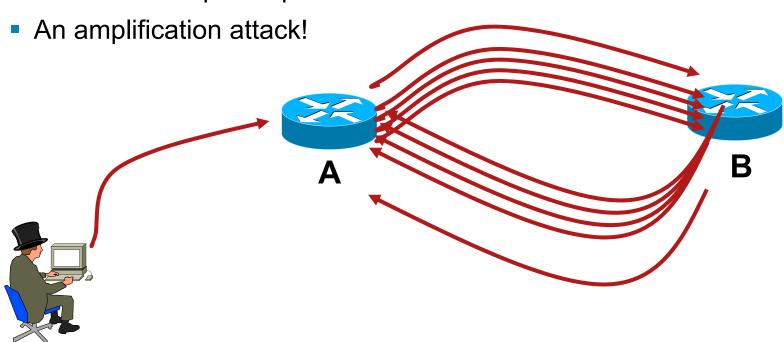
- In IPv6 fragmentation is done only by the end system
   Tunnel end-points are end systems => Fragmentation / re-assembly can happy inside the network
- Reassembly done by end system like in IPv4
- Attackers can still fragment in intermediate system on purpose a great obfuscation tool

## Parsing the Extension Header Chain Fragmentation Matters!


- Extension headers chain can be so large than it is fragmented!
- Finding the layer 4 information is not trivial in IPv6

Skip all known extension header

Until either known layer 4 header found => **SUCCESS** 


Or unknown extension header/layer 4 header found... => FAILURE

Or end of extension header => FAILURE



# Type 0 Routing Header One issue: Amplification Attack

- Beside the well-known dumb firewall by-pass...
- What if attacker sends a packet with RH containing
  A -> B -> A -> B -> A -> B -> A
- Packet will loop multiple time on the link R1-R2



\* As of RFC 5095 (Dec 2007) RH0 is deprecated

### "IPsec End-to-End will Save the World"?

- IPv6 mandates the implementation of IPsec
- IPv6 does not require the use of IPsec
- Some organizations believe that IPsec should be used to secure all flows...

Interesting **scalability** issue (n<sup>2</sup> issue with IPsec)

Need to **trust endpoints and end-users** because the network cannot secure the traffic: no IPS, no ACL, no firewall

Network **telemetry is blinded**: NetFlow of little use

Network **services hindered**: what about QoS?

Recommendation: do not use IPsec end to end within an administrative domain.

Suggestion: Reserve IPsec for residential or hostile environment or high profile targets.



## Other issues and areas of concern



### IPv6 tools ready to be used

### **Let the Games Begin**

Sniffers/packet capture

Snort

**TCPdump** 

Sun Solaris snoop

COLD

Wireshark

Analyzer

Windump

WinPcap

Scanners

IPv6 security scanner

Halfscan6

Nmap

Strobe

Netcat

DoS Tools

6tunneldos

4to6ddos

Imps6-tools

Packet forgers

Scapy6

SendIP

**Packit** 

Spak6

### **Tools of trade**

THC IPv6 Attack Toolkit

parasite6, alive6, fake\_router6, redir6, toobig6, detect-new-ip6, dos-new-ip6, fake\_mld6, fake\_mipv6, fake\_advertiser6, smurf6, rsmurf6

- Scannersnmap, halfscan6
- Packet forgeryScapy6, SendIP, Packit, Spak6
- DoS Tools6tunneldos, 4to6ddos, Imps6-tools





# **IPv4 to IPv6 Transition Challenges**

- 16+ methods, possibly in combination
- Dual stack

Consider security for both protocols

Cross v4/v6 abuse

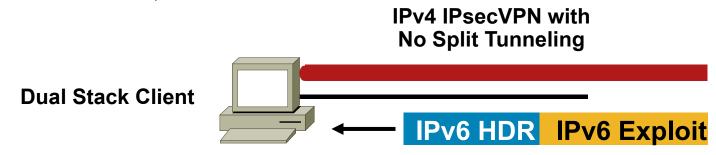
Resiliency (shared resources)

Tunnels

Bypass firewalls (protocol 41 or UDP)

Can cause asymmetric traffic (hence breaking stateful firewalls)

## **Dual Stack Host Considerations**


Host security on a dual-stack device

Applications can be subject to attack on both IPv6 and IPv4

Fate sharing: as secure as the least secure stack...

 Host security controls should block and inspect traffic from both IP versions

Host intrusion prevention, personal firewalls, VPN clients, etc.



Does the IPsec Client Stop an Inbound IPv6 Exploit?

## **Dual Stack With Enabled IPv6 by Default**

Your host:

IPv4 is protected by your favorite personal firewall...
IPv6 is enabled by default (Vista, Linux, Mac OS/X, ...)

Your network:

Does not run IPv6

Your assumption:

I'm safe

Reality

You are not safe

Attacker sends Router Advertisements

Your host configures silently to IPv6

You are now under IPv6 attack

Probably time to think about IPv6 in your network

## **Enabling IPv6 on a Remote Host**

(in this Case Mac OS/X)

1) Dual-Stack MacOS: any IPv6 Router?

```
2) Hacker: I'm the
                                       estination
                                                         Protocol Info
             Router
                                       f02::1:ff00:22
                                                         ICMPv6 Neighbor solicitati
                                       f02::1:ff00:22
                                                         ICMPv6 Neighbor solicitati
     3 1.568197
                   2001: ap-
                                      ff02::1:ff00:22
                                                         ICMPv6 Neighbor solicitati
                   fe80::215:581
     4 99.069381
                                                         ICMPv6 Router advertisement
     5 455.573664 fe80::215:58ff:fe2
                                                         ICMPv6 Router advertisement
     6 880.382347 fe80::20d:93ff:fe3 ff02::2
                                                         ICMPv6 Router solicitation
                  fe80::20d:93ff:fe3 ff02::fb
                                                                Standard query response SRV
                                                        ICMPv6 Neighbor solicitation
                                                         ICMPv6 Multicast listener report
                  fe80::20d:93ff:fe3 ff02::2:52a6:75e2
                                                         ICMPv6 Multicast listener report
    12 883.604742 fe80::20d:93ff:fe3 ff02::2
                                                         ICMPv6 Multicast
    13 1476.586161 fe80::215:58ff:fe2 ff02::1
                                                         ICMPv6 Router ad
    14 1716.588901 fe80::215:58ff:fe2 ff02::1
                                                         ICMPv6 Router ad
    15 1806.190418 2001:db8:dead::1
                                      ff02::1:ff38:c874 ICMPv6 Neighbor
                                                                             icitation
⊞ Ethernet II, Src: AppleCom_38:c8:74 (00:0d:93:38:c8:74). Dst: IPv6-Neid
                                                                             -Discovery_ff
Internet Control Message Protocol v6
```

■ Frame 9 (78 bytes on wire, 78 bytes captured)

■ Internet Protocol Version 6

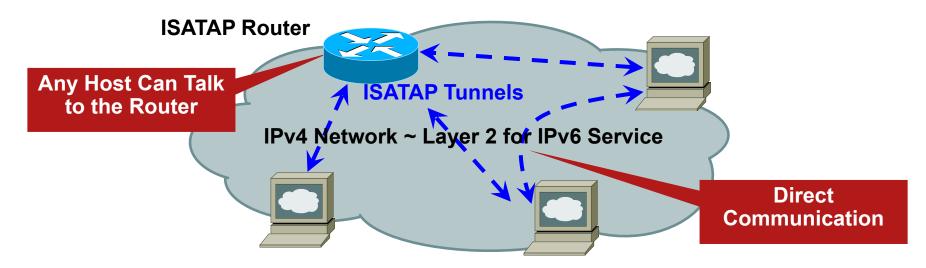
Type: 135 (Neighbor solicitation)

Code: 0

Checksum: 0x48da [correct]

Target: 2001:db8:dead:0:20d:93ff:fe38:c874

3) Newly Enabled IPv6 MacOS does DAD


4) The Full IPv6 **Address of the MacOS** 

## **Transition Threats—ISATAP**

- Unauthorized tunnels—firewall bypass (protocol 41)
- IPv4 infrastructure looks like a Layer 2 network to ALL ISATAP hosts in the enterprise

This has implications on network segmentation and network discovery

- No authentication in ISATAP—rogue routers are possible Windows default to isatap.example.com
- Ipv6 addresses can be guessed based on IPv4 prefix



## 6to4 Relay Security Issues

Traffic injection & IPv6 spoofing

Prevent spoofing by applying uRPF check

Drops 6to4 packets whose addresses are built on IPv4 bogons

Loopback

**RFC 1918** 

Redirection and DoS

Block most of the ICMPv6 traffic:

No Neighbor Discovery

No link-local traffic

No redirect

Traffic is asymmetric

6to4 client/router -> 6to4 relay -> IPv6 server:

client IPv4 routing selects the relay

IPv6 server -> 6to4 relay -> 6to4 client/router:

server IPv6 routing selects the relay

Cannot insert a stateful device (firewall, ...) on any path

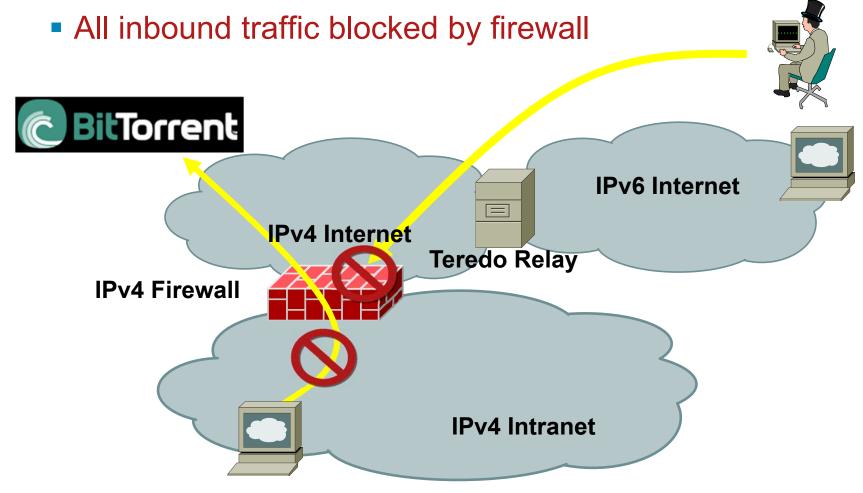
## **TEREDO?**

#### Teredo navalis

A shipworm drilling holes in boat hulls

Teredo Microsoftis

IPv6 in IPv4 punching holes in NAT devices

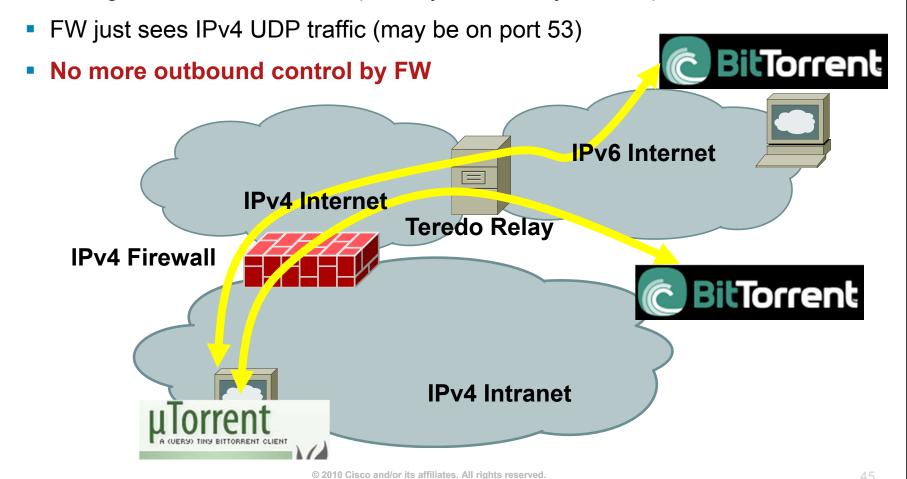



**Source: United States Geological Survey** 

## **Teredo Tunnels (1/3)**

Without Teredo: Controls Are In Place

All outbound traffic inspected: e.g., P2P is blocked

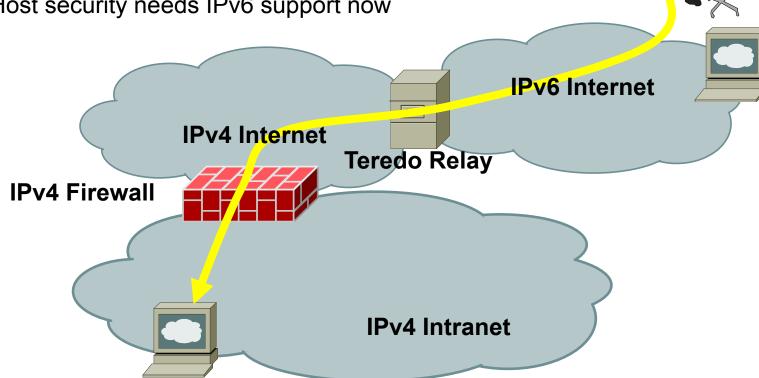



## Teredo Tunnels (2/3)

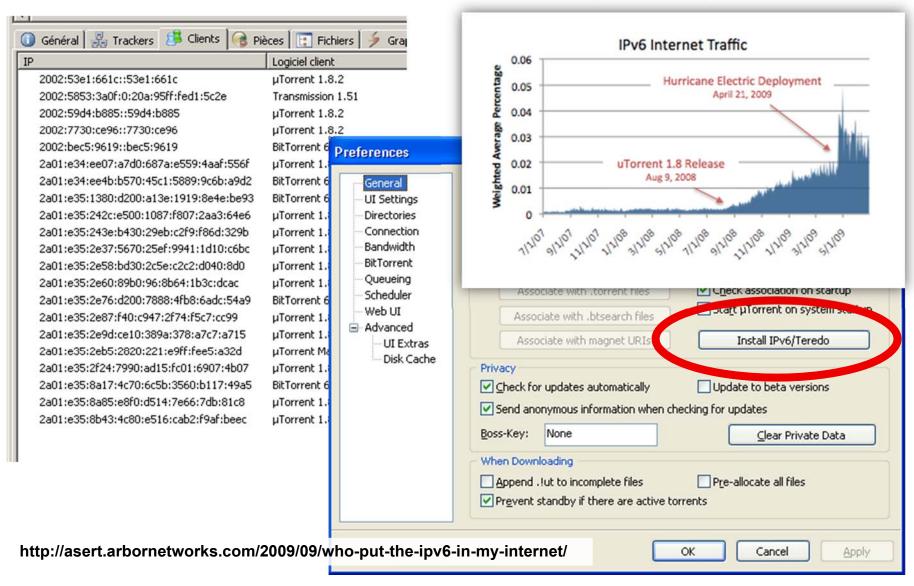
#### No More Outbound Control

## Teredo threats—IPv6 Over UDP (port 3544)

- Internal users wants to get P2P over IPv6
- Configure the Teredo tunnel (already enabled by default!)




## Teredo Tunnels (3/3)


#### No More Outbound Control

## **Once Teredo Configured**

- Inbound connections are allowed
- IPv4 firewall unable to control
- IPv6 attack can reach the target directly
- Host security needs IPv6 support now



# μTorrrent 1.8 (Released Aug. '08)



## **Looping Attack Between 6to4 and ISATAP**



ISATAP router
Prefix 2001:db8::/64

192.0.2.2

1. Spoofed packet

S: 2001:db8::200:5efe:c000:201

D: 2002:c000:202::1

2. IPv4 Packet containing

S: 2001:db8::200:5efe:c000:201

D: 2002:c000:202::1

3. IPv6 packet S: 2001:db8::200:5efe:c000:201

D: 2002:c000:202::1

### Repeat until Hop Limit == 0

Root cause

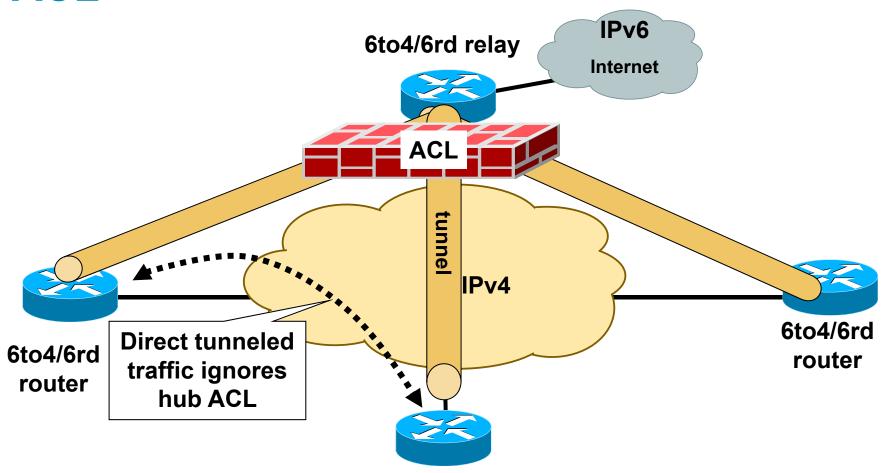
Same IPv4 encapsulation (protocol 41)

Different ways to embed IPv4 address in the IPv6 address

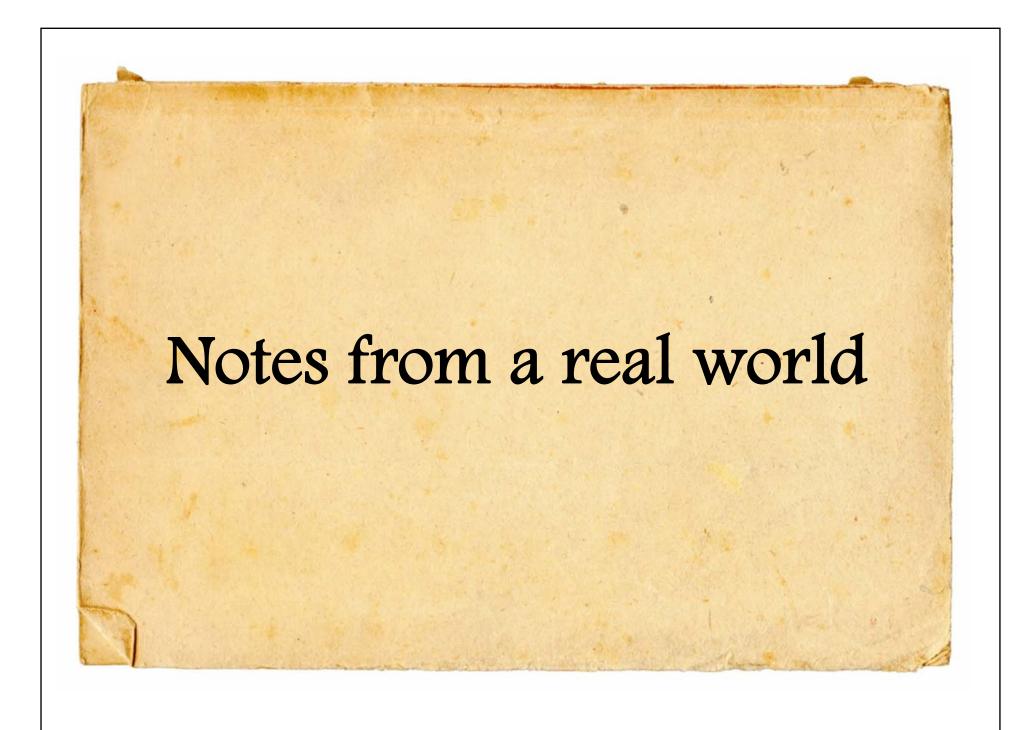
ISATAP router:

accepts 6to4 IPv4 packets

Can forward the inside IPv6 packet back to 6to4 relay


Symmetric looping attack exists

#### **Mitigation:**


- •Easy on ISATAP routers: deny packets whose IPv6 is its 6to4
- •Less easy on 6to4 relay: block all
- **ISATAP-like local address?**
- •Good news: not so many open ISATAP routers on the Internet

http://www.usenix.org/events/woot09/tech/full\_papers/nakibly.pdf

# 6to4/6rd Tunnels Bypass Centralized ACL



6rd CPE router can be configured to always go through hub Direct CPE-CPE communication must then be forbidden by IPv4 network



# Summary



# IPv6 (in)security

- Any network is as secure as You can make it
- Do not blindly copy IPv4 templates to IPv6 ones use caution and knowledge

...most of the work is already done, but needs rethinking when applied to a new protocol

Do not fight with IPv6 – try to embrace it's capabilities

NAT no longer needed, one less step to correlate events/configure the user account

Stateless or stateful autoconfiguration, mobility

# IPv6 (in)security

 If you don't have IPv6-enabled ISP, go to HE or SixxS and get an IPv6 tunnel to start practicing

http://ipv6.he.net/

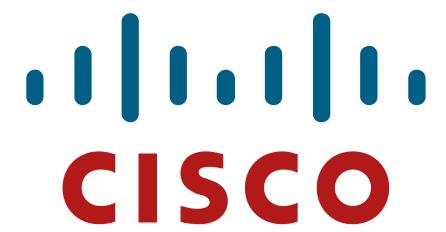
http://www.sixxs.net







# Any questions?






Thanks!

# IPv6 (in)security Łukasz Bromirski Ibromirski@cisco.com



