Cisco Learning Network CCIE SP series

|OS XR RPL — Route Policy Language

Y ukasz Bromirski

lukasz.bromirski@cisco.com / @LukaszBromirski

Cisco Learning Network CCIE SP Series

Agenda

Are [route-maps|prefix-lists|access-lists|filter-list|distribute-
list|offset-lists|...] not enough?

= RPL introduction
= RPL basic usage & constructs

= RPL in specific use cases and troubleshooting RPL
= Q&A

Route Policy Language

Introduction

RPL brings clarity to Route-Maps

router bgp 100

bgp log-neighbor-changes

neighbor
neighbor
neighbor
neighbor
neighbor
neighbor
neighbor
neighbor
neighbor

neighbor

100.64.1.1 remote-as 101

100.64.1.
100.64.1.
100.64.1.
100.64.1.
100.64.1.
100.64.1.
100.64.1.
100.64.1.
100.64.1.

1

1

password CLN-WEBINARS-RULEZ
remove-private-as
soft-reconfiguration inbound
prefix-list INTERNET-IN in
prefix-list INTERNET-OUT out
route-map INTERNET-IN in
route-map INTERNET-OUT out
filter-list 3 in

filter-list 7 out

What is the order of
processing?

Filtering order of operations — 10S/I0OS-XE

= For inbound updates the order of preference is:
route-map
filter-list

prefix-list, distribute-list

= For outbound updates the order of preference is:
filter-list
route-map | unsuppress-map
advertise-map (conditional-advertisement)
prefix-list|distribute-list

OREF prefix-list (a prefix-list the neighbor sends us)

= Note: The attributes prefix-list and distribute-list are mutually exclusive, and only one command (neighbor prefix-
list or neighbor distribute-list) can be applied to each inbound or outbound direction for a particular neighbor.

So.... new routing policy tool is needed!

= RPL developed along the IOS XR (1997-)

= Main building principles:
exploit modularity (think SPs, think IXPs, scale, SCALE!)
parametrization (SCALE again!)

clarity (one default, no hidden steps, explicit logic)

= |ncremental changes in new releases

Let’s compare live policy — SRD in action

I0S/I0S XE/NX OS

route-map BGP-BH-IPv4 deny 10

match ip address prefix-list GOLDEN-NETS

route-map BGP-BH-IPv4 permit 100
match community

set
set
set
set

set
]

local-preference 6666

weight 6666

origin igp

community no-advertise additive
ip next-hop 192.0.2.1

route-map BGP-BH-IPv4 permit 200
match community

set
set
set
set
set

local-preference 6666

weight 6666

origin igp

community no-advertise additive
ip next-hop 192.0.2.1

I0S XR

]
route-policy BGP-BH-IPv4
if destination in GOLDEN-NETS then
drop
endif
if community matches-within \
(’) then
set local-preference 6666
set weight 6666
set origin igp
set community (no-advertise) additive
set next-hop discard
endif

1. Do not program into FIB anything pointing to ,Golden
prefixes” (root DNS/NTP/local)

2. Install in FIB any routes matching communities bgpbh-
bogons & bgpbh-bogons-self and set proper attributes
to drop/discard them

My BGP edge policies simplified!

I0S XR

route-policy BGP-EDGE-ORANGE
apply BGP-F-BOGONS
apply BGP-BP-COMMON
apply BGP-BP-ORANGE-PREF
end-policy
|
route-policy BGP-EDGE-TMOBILE
apply BGP-F-BOGONS
apply BGP-BP-COMMON
apply BGP-BP-TMOBILE-PREF
|
router bgp
neighbor x.x.x.x
address-family ipvi4
route-policy BGP-EDGE-ORANGE in
neighbor x.x.y.y
address-family ipv4
route-policy BGP-EDGE-TMOBILE in

prefix-set PFX-BOGONS
0.0.0.0/8 le 32,
10.0.0.0/8 le 32,
[«..]
end-set
|
route-policy BGP-F-BOGONS
if destination in (PFX-BOGONS) then
drop
endif
end-policy

route-policy BGP-BP-COMMON
set origin igp
set local-preference 500
set med 100
delete community all
end-policy

route-policy BGP-BP-ORANGE-PREF
if destination in (PFX-ORANGE) then
set local-preference 200
else
set local-preference 90
endif
end-policy

RPL keywords

Policy
Attach Point

ess-family ipv6 unicast
gregate-address 2001:33:56::/48 summary-only
redistribute connected route-policy RED-BGP
!
neighbor 33.56.5.5
remote-as 3356
password encrypted 12383644415E5A
update-source Loopback0
address-family ipv4 unicast
route-policy RPL-BGP-TE in

Policy
Attach Point

Protocol Attribute(s) RPL Attribute(s) RPL Operation(s)
next-hop source pass / drop
weight destination suppress-route
local-preference route-type unsuppress-route
med rib-has-route length, unique-length
origin traffic-index set
as-path dampening apply
community label If, then
ext community tag else, elseif
rd and, or, not
eq, neq, le, gt
in, Is

i0S-regex

Actions in a RPL

Define action (default is drop) and may affect control flow

There is an implicit drop at the end of RPL processing.
A route must be given a ‘ticket’ to ensure that it has been inspected by the RPL

Pass — prefix allowed if not later dropped
pass grants a ticket to defeat default drop
Execution continues after pass
Set — value changed, prefix allowed if not later dropped
Any set at any level grants a ticket
Execution continues after set
Values can be set more than once
Drop — prefix is discarded
Explicit drop stops policy execution
Implicit drop f policy runs to end without getting a ticket)

Done — accepts prefix and stops processing

Things to remember when working with RPL.:
Default eBGP policy (a.k.a. RFC 8212)

= eBGP sessions by default won’t exchange any prefixes unless
policy is configured

= There’s a knob:
bgp unsafe-ebgp-policy

= hitps://tools.ietf.org/html/rfc8212

https://tools.ietf.org/html/rfc8212

Things to remember when working with RPL.:

Original value is stored until end of policy

= A conditional match does not occur on intermediary values during
the route policy processing.

Conditional Matches on Original Value

route-policy ORGINAL-VALUES
if med eq 100 then
set med 200
endif
if med eq 200 then
drop
endif
end-policy

= |In the example, only the original routes with a MED of 200 are
dropped and the routes with values set to 200 are not dropped.

Basic RPL Examples

= Basic Pass Policy

Example Configuration

route-policy PASS-ALL
pass
end-policy

= Basic Drop Policy

route-policy DROP-ALL

drop _ Somewhat redundant due
end-policy to implicit drop

RPL Examples

] L Conditional]
= Basic conditional statement Match
Example Config
if Match-Condition-One then if med eq 150 then
Action-One pass
end-if endif \[Action]

= Branching options

Example Configuration

if Match-Condition-One then if destination in (10.0.0.0/8 ge 8) then
Action-One pass
else else
Action-Two drop Notice we are matching networks
end-if endif directly in the RPL.

[Comparison operator Supports Prefix Matching or Wildcard

RPL Examples (continued)

= Multiple branching options

if Match-Condition-One then if destination in (10.0.0.0/8 ge 8) then
Action-One set tag 1

elseif Match-Condtion-Two then elseif destin \tion in (172.16.0.0/12 ge12) then
Action-Two set tag 2

else else
Action-Three drop

end-if endif

Notice there’s no
action here - ‘set’ overrides drop

Nested Conditions

= |[f statements within other if/elseif/else statements

Method or placing multiple conditions

= Nesting can be any depth

if MATCHING-CONDITION-ONE then if as-path passes-through 100" then
if MATCHING-CONDITION-TWO then if destination in PREFIX-SET-RFC1918 then
ACTION-ONE pass
end-if endif

end-if endif

Simplifying BGP AS-Path Conditions

Route-Map AS-Path ACL Logic

AS Path Selection Criteria . . RPL Logic
(ip as-path access-list 1) 9

Local Routes permit "$ if as-path is-local
Onlly Routes From permit "200 e S
Neighbor AS 200
Only Routes O"gmatmg permit 200$ if as-path originates-from '200'
From AS 200
Passes Through AS200 permit 200 if as-path passes-through '200'
Routes From 3 ASes or less permit “[0-9]+ [0-9]+ [0-9]+? if as-path length le 3

away

RPL Examples

Bad RPL Logic

route-policy METRIC-MODIFICATION
if destination in (192.168.0.0/16 ge 16) then

set med 100
endif ())
set med 200 Overwrites setting
end-policy —\

Good RPL Logic

Option #1 Option #2

route-policy METRIC-MODIFICATION route-policy METRIC-MODIFICATION

if destination in (10.0.0.0/8 ge 8) then
set med 100

if destination in (10.0.0.0/8 ge 8) then
set med 100

pass done

else endif Stops all processing
set med 200 set med 200 on matched prefixes
pass end-policy

endif

end-policy

Route Policy Language

Sets, nesting policies and parametrization

RPL Policy Sets

= Prefix-lists, ACLs, AS PATH ACLs can be confusing because of
permit/deny actions

|OS XR uses policy sets to store the same information:
Prefix set, Community set, Extended Community set, AS PATH
set, RD set

= There is no ‘deny’ in a Policy set

= Processing occurs until the first match is made

Named and Inline Set (same behavior)

if destination in (10.0.0.0/8 ge 8, 172.16.0.0/12 ge 12, 192.168.0.0/16 ge 16) then
pass
else
drop
endif

Set Example Configuration

route-policy RFC1918-PREFIX-SET

if destination in PREFIX-SET-RFC1918 then
pass

endif

end-policy

1

prefix-set PREFIX-SET-RFC1918
10.0.0.0/8 ge 8,
172.16.0.0/12 ge 12,
192.168.0.0/16 ge 16

end-set

ViEWing Set Based RPLS Keyword required to see

sets in the RPL

Inline Example Configuration

RP/0/0/CPUO:XR1l#show rpl route-policy RFC1918-PREFIX-SET inline

route-policy RFC1918-PREFIX-SET
if destination in (10.0.0.0/8 ge 8, 172.16.0.0/12 ge 12, 192.168.0.0/16 ge 16) then
pass
endif
end-policy

Parameter Passing

Single Parameter List of policy parameters

route-policy PARAM ($MED)

set med S$SMED 4]
end-policy Accessing the passed

parameter

router bgp 300

[.]
neighbor 33.56.5.1

remote-as 49.12
address-family ipv4 unicast
route-policy PARAM (50)_in
route-policy PASS-ALL ou

Calling policy and passing
parameter

Using Multiple Parameters

Multiple Parameters

route-policy SP-PEER ($AS, $PREFIX)

if destination in S$PREFIX and as-path originates-from ‘$SAS’ then

pass Can reference a
endif olicy-set
end-policy P \%

router bgp 300
[..]
neighbor 33.56.5.1
remote-as 49.12
address-family ipv4 unicast
route-policy SP-PEER (50, CUST1-PREFIX-SET) in
route-policy PASS-ALL out

Nesting in RPL

= By nesting policies we can scale RPL out

Example Configuration

route-policy PARENT
apply CHILD-ONE
apply CHILD-TWO
pass

end-policy

route-policy CHILD-ONE
set weight 100
end-policy

route-policy CHILD-TWO
set community (2:1234) additive
end-policy

Boolean (Logical) Operations

= Comparison operators are context sensitive

Semantic check not done until RPL policy use is committed

= Supported Operators - Not, And, & Or (in order of precedence)

if Not Match-Condition-One and Match-Condition-Two or Match-Condition-Three

N J
Y
<:>Prefixes not in Match-Condition-One
N J

Y
Prefixes not in Match-Condition-One,

but are in Match-Condition-Two
e
C:: Prefixes not in Match-Condition-One, but are in
Match-Condition-Two, however any prefix in Match-

Condition-Three are allowed regardless of Match-
Condition-One or Match-Condition-Two

Boolean (Logical) Operations

= Conditional match that requires a route to not pass through AS 100
or AS 200, and must be within the 192.168.0.0/16 network range

if (((Not Match-Condition-One) and Match-Condition-Two) or Match-Condition-Three)

Use of parentheses

if not (as-path passes-through 100" or as-path passes-through '200') and destination in
(192.168.0.0/16 ge 16)

Boolean Operators

Negation

if not destination in PREFIX-SET-RFC1918 then
pass
endif

Conjunction

if destination in PREFIX-SET-RFC1918 and as-path passes-through '100’ then
pass
endif

if destination in PREFIX-SET-RFC1918 or as-path passes-through '100' then
pass
endif

Route Policy Language

Corner cases, comments and troubleshooting

Community matching and manipulation

Matching specific community(-ies) Deleting / modifying communities
: éoute—policy AS100-TE

route-policy AS100-TE
if community matches-any (100:748) then if [..]
delete community in (internet) delete community in (100:%*)
endif endif
pass

pass
end-policy end-policy
]]

Nested policies in ,if’ statement

= What is the behavior of policies if nested at ,if’ statement?

|
route-policy CHECK-MULTIPLE-OPTIONS
if apply CHECK-FIRST and apply CHECK-SECOND then
set community 3356:666
else
drop
endif
pass
end-policy
|

Remarks in policies (that survive reboot)

(and upgrade... and in order defined originally ;))

route-policy CLN71
this is specific policy for
testing the ordered remarks
for CLN session slides
#
welcome
set med 6

end-policy

|

Profiling of RPL runs — use with care!

= "Everybody has a testing environment. Some people are lucky
enough enough to have a totally separate environment to run
prOdUCtion in.” @ DevOptimist.

@stahnma

RP/0/0/CPUO:SP1R2#debug pcl profile detail
]

(wait)
]

RP/0/0/CPU0:SP1R2#sh pcl protocol bgp speaker-0 neighbor-in-dflt default-IPv4-40.67.1.1 policy profile
Policy profiling data
Policy : AS100-TE

Pass : 4

Drop : O

of executions : 4

Total execution time : Omsec

Node Id Num visited Exec time Policy engine operation
PXL 0_1 community delete-in

<end-policy/>

Route Policy Language

Migration hints

Migrating route-maps to RPL

= Do a simple syntax translation
= Nest conditionals to reduce repetitions & comparisions
= Use inline sets to remove small indirect set references

= Parameterize to reuse common structures

Step 1: Direct syntax translation

= Each route-map becomes a route-policy
= Each clause in a route-map becomes a clause in an if-then-else sequence.

= For each clause:
Map each ‘match’ to the corresponding conditional.

Map each ‘set’ to the corresponding ‘action’.

route-map PROCESS INBOUND deny 5
match as-path 150

! route-policy PROCESS INBOUND

route-map PROCESS INBOUND permit 10 if (as-path in aspath 150) then

match as-path 10 drop

match community 1 elseif ((community matches-any comm 1) and (as-path in aspath 10)) then
set local-preference 70 set local-preference 70

set community 100:500 100:505 100:999 additive set community (100:500, 100:505, 100:999) additive

! elseif ((community matches-any comm 2) and (as-path in aspath 10)) then
route-map PROCESS INBOUND permit 20 set local-preference 80

match as-path 10 set community (100:500, 100:505, 100:999) additive

match community 2 else

set local-preference 80 set local-preference 90

set community 100:500 100:505 100:999 additive set community (100:500, 100:505, 100:999) additive

! endif
route-map PROCESS INBOUND permit 30 end-policy

set local-preference 90

set community 100:500 100:505 100:999 additive
1

Step 2: Nest Conditionals

= Collect similar conditions into nested ‘if’ statements.

route-policy PROCESS INBOUND
if (as-path in as _path 150) then
drop
elseif (as-path in as_path 10) then
if (community matches-any comm 1) then

set local-preference 70
set community (100:500, 100:505, 100:999) additive

elseif (community matches-any comm 2) then

set local-preference 80
set community (100:500, 100:505, 100:999) additive

endif
else

set local-preference 90

set community (100:500, 100:505, 100:999) additive
endif
end-policy

Step 3: Use inline sets (when it makes sense)

* Small sets (AS-Path set, Community set, etc.) can be replaced
with inline sets.

route-policy PROCESS INBOUND
if (as-path in ' 701 ', ' 3561 ‘) then
drop
elseif (as-path in '721409 ') then
if (community matches-any ‘5511:70’) then
set local-preference 70
set community (100:500, 100:505, 100:999) additive
elseif (community matches-any ‘5511:80’) then

set local-preference 80
set community (100:500, 100:505, 100:999) additive

endif

else
set local-preference 90
set community (100:500, 100:505, 100:999) additive

endif
end-policy

Step 4: Parameterize

= Similar actions can be grouped into a common policy with
parameters.

route-policy set attributes (S$pref)

set local-preference S$pref

set community (100:500:, 100:505, 100:999) additive
end-policy
|

route-policy PROCESS INBOUND
if (as-path in ' 701 ', ' 3561 ‘) then
drop
elseif (as-path in '721409 ') then
if (community matches-any ‘5511:70') then
apply set attributes (70)
elseif (community matches-any ‘5511:80’) then
apply set attributes (80)
endif
else
apply set attributes (90)
endif
end-policy

Policy Lists with mixed entries.

e Recall, that sets within RPL do not convey the concept of permit or
deny - only membership.

e So, how does the following policy get converted ?

ip prefix-list martians seq 10 permit 0.0.0.0/0

ip prefix-list martians seq 20 permit 127.0.0.0/8 le 32

ip prefix-list martians seq 30 deny 10.192.0.0/10 ge 12 le 21
ip prefix-list martians seq 40 permit 10.0.0.0/8 le 32

ip prefix-list martians seq 50 permit 172.16.0.0/12 le 32

ip prefix-list martians seq 60 permit 192.168.0.0/16 le 32
ip prefix-list martians seq 70 permit 128.0.0.0/16 le 32

ip prefix-list martians seq 80 permit 192.0.0.0/24 le 32

ip prefix-list martians seq 90 permit 223.255.255.0/24 le 32
ip prefix-list martians seq 100 permit 224.0.0.0/3 le 32

ip prefix-list martians seq 110 permit 192.157.69.0/24 le 32
|

route-map CUST-FACE deny 10

match ip address prefix-list martians

Policy Lists with

Keep all of the ‘permit’s ?

prefix-set pfx martians
0.0.0.0/0,
127.0.0.0/8 le 32,
10.0.0.0/8 le 32,
172.16.0.0/12 le 32,
192.168.0.0/16 le 32,
128.0.0.0/16 le 32,
192.0.0.0/24 1le 32,
223.255.255.0/24 1le 32,
224.0.0.0/3 le 32,
192.157.69.0/24 le 32
end-set
|
route-policy CUST_FACE
if (destination in pfx martians)
drop
else
pass
endif
end-policy
|

mixed entries.

Keep all of the ‘deny’s ?

prefix-set pfx martians
10.192.0.0/10 ge 12 le 21,
end-set
|
route-policy CUST_ FACE
if (destination in pfx martians) then
pass
else
drop
endif
end-policy
|

then

Policy Lists with mixed entries.

prefix-set pfx martians pl permit

0.0.0.0/0
The answer is: BOTH ! 127.0.0.0/8 1e 32
1) Partition the prefix-list into separate prefix-set pfx martians p2 deny
10.192.0.0/10 12 1 21
sections - each containing a string of endiset o0

|
prefix-set pfx martians p3 permit
10.0.0.0/8 le 32,

‘permit’ or ‘deny’ entries.

2) Create a prefix-set to correspond to each 172.16.0.0/12 le 32,
. 192.168.0.0/16 le 32,
section. 128.0.0.0/16 le 32,
191.255.0.0/16 le 32,
I - i 192.0.0.0/24 le 32,
3) Adqu.t thg route-policy to process each raaoaerol2t sl 4,
part|t|on in turn. 224.0.0.0/3 le 32,
192.157.69.0/24 le 32

end-set

Keeping the partitions in order is important
to preserve the original logic with respect route-policy CUST_FACE

if (destination in pfx martians pl permit) then

to overlapping entries. drop
elseif (destination in pfx martians_p2 deny) then
: pass
The same prOCGSS Can. be applled to as- elseif (destination in pfx martians p3 permit) then
path-set(s) & community-set(s) _ Srop

end-policy

Route Policy Language

Follow up — where to look for information

Resources

= Understanding and using I0S XR RPL:
https://supportforums.cisco.com/t5/service-providers-documents/asr9000-xr-understanding-and-using-rpl-route-
policy-language/ta-p/3117050

= Using IOS XR RPL for BGP:
https://learning.nil.com/assets/Tips-/Using-the-lI0OS-XR-Routing-Policy-Language-for-BGP.pdf

= Great site for IOS XR geeks:
https://xrdocs.qithub.io/

= Cisco Press IOS XR fundamentals book:
http://www.ciscopress.com/store/cisco-ios-xr-fundamentals-9781587052712

= Cisco Press IP routing on 10S, I0S XE and 10S XR book:
http://www.ciscopress.com/store/ip-routing-on-cisco-ios-ios-xe-and-ios-xr-an-essential-9781587144233

= CCIE SP Study Group home page:
https://learningnetwork.cisco.com/groups/ccie-sp-study-group

= CCIE SP bootcamp:
https://micronicstraining.com/event/ccie-service-provider-v4-boot-camp/

https://supportforums.cisco.com/t5/service-providers-documents/asr9000-xr-understanding-and-using-rpl-route-policy-language/ta-p/3117050
https://learning.nil.com/assets/Tips-/Using-the-IOS-XR-Routing-Policy-Language-for-BGP.pdf
https://xrdocs.github.io/
http://www.ciscopress.com/store/cisco-ios-xr-fundamentals-9781587052712
http://www.ciscopress.com/store/ip-routing-on-cisco-ios-ios-xe-and-ios-xr-an-essential-9781587144233
https://learningnetwork.cisco.com/groups/ccie-sp-study-group
https://micronicstraining.com/event/ccie-service-provider-v4-boot-camp/

Cisco Learning Network CCIE SP series

|OS XR RPL — Route Policy Language
Thank You!

Y ukasz Bromirski

lukasz.bromirski@cisco.com / @LukaszBromirski

Cisco Learning Network CCIE SP Series

